Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system.
نویسندگان
چکیده
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
منابع مشابه
Review Biochemistry, Physiology, and Pathophysiology of NADPH Oxidases in the Cardiovascular System
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases,...
متن کاملNADPH oxidase and endothelial cell function.
Intracellular ROS (reactive oxygen species) such as superoxide and H2O2 have been increasingly appreciated to have a role in endothelial pathophysiology. Of the several sources within the vasculature, a family of multi-subunit NADPH oxidases appears to be a predominant contributor of endothelial superoxide. More importantly, this enzyme system is activated by numerous stimuli and is involved in...
متن کاملOxidative stress and vascular remodelling.
Oxidative stress plays an important role in the pathophysiology of vascular diseases. Reactive oxygen species, especially superoxide anion and hydrogen peroxide, are important signalling molecules in cardiovascular cells. Enhanced superoxide production increases nitric oxide inactivation and leads to an accumulation of peroxynitrites and hydrogen peroxide. Reactive oxygen species participate in...
متن کاملReactive oxygen species signaling in vascular smooth muscle cells.
Reactive oxygen species (ROS) have been shown to function as important signaling molecules in the cardiovascular system. Vascular smooth muscle cells (VSMCs) contain several sources of ROS, among which the NADPH oxidases are predominant. In VSMCs, ROS mediate many pathophysiological processes, such as growth, migration, apoptosis and secretion of inflammatory cytokines, as well as physiological...
متن کاملThe NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 110 10 شماره
صفحات -
تاریخ انتشار 2012